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ABSTRACT 
Developed power systems in the world are well meshed with local, inter-regional and international connection 

making the increasing complex to operate. With advancement in power electronics, the control of these systems 

are faster with the aid of Flexible AC Transmission system devices (FACTs) introduced as control element in the 

system. As more of these devices are installed optimally in the transmission line at various locations, it is 

unarguable that it has the capabilities to control powerflows in major transmission line power corridors as well as 

improve voltage profiles of some critical buses within their respective operational domains of dominant 

influence. In addition, there tends to be a mutual conflict within the system. These unhealthy interactions within 

the system where these devices tend to operate beyond their operational domain. This paper is meant to x-ray 

and resolve these advance conflict as they occur in the system.  

 

I. INTRODUCTION 
It is unarguable that optimally installed 

FACTSdevices possess flexible capabilities to 

control powerflows in major transmission line 

power corridors as well as improve voltage 

profiles of some critical buses within their 

respective operational domains of dominant 

influence. This is abstractly illustrated in 

Figure 1.0 as overlapping circular domains 

that encompass transmission lines and buses 

where mutual influences might occur. This 

has import on there maiming part of the grid 

including the line sand buses where other FACTS 

devices are placed.  Basically, the control of the 

FACTS devices is local,i.e.no supervisory control 

that coordinates the actions of different devices. 

There is need therefore to incorporate higher level 

steady state coordinator to resolve and/or mitigate 

mutual influences among devices that could 

possibly result in adverse interactions in 

interconnected power systems. 

A t w o  l e v e l  supervisory s t e a d y  

s t a t e  control based on optimal power flow has  

b een  developed as shown in Figure 1.0.The 

objective is to prevent conflicts among the devices 

by coordinating their actions to mitigate the danger 

of induced overloaded equipment and 

transmission line congestions. The optimal 

power flow solution yields voltage profile and 

active power losses for the system with embedded 

FACTS devices are 

Compared withthe base case scenario without 

FACTSdevices to establish, if any, voltage profile, 

technical losses and load ability improvements. 

Referring to Figure 1.0, each local 

controller dedicated to a FACT device that relies on 

local measurements such as line flows and bus 

voltage to adjust its parameter settings and transmit 

such information to central coordinator for further 

processing.  The central coordinator acquires global 

system data to calculate sensitivity matrix to 

identify conflicts amongst FACTS devices and then 

implement OPF to determine their parameters to 

resolve such conflicts and insure optimum 

operational steady state performance at all times.  

Expectedly where conflicts do not exist, 

decentralized implementations of multi-FACTS 

devices are retained as optimal. 

 

 
 

Figure 1.0: Interconnected Power System Equipped 

with Distributed N FACTS Devices under 

Hierarchical steady State Control Structure to 
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Resolve Operational Conflicts 

 

 

Table 1.0:  Graph Theory Based Parameter Characterizations of the Two Test Systems 

 

 

 

 

 

 

 

 

 

 

 

*Maximum number of direct links between buses i 

and j within a given network; 

**Extracted from reference [34]; 

*** Computed via algorithmic procedure based on 

standard equations given in [69]; 

 

1.1Description of Hierarchical Control Structure 

Implementation for Optimally Placed Multi-FACTS 

Devices in the Nigerian Grid System  

  The Nigerian grid system is described as 

structurally deficient because of its radial topology as 

further confirmed by its graph theory based 

characteristic features summarized in Table 1.2.   The 

inadequacy of transmission infrastructure has called 

for construction of new transmission power corridor 

to provide alternative route for power delivery to 

consumers in case of critical N-1 contingency or to 

carry diverted power from heavily loaded 

transmission lines during bilateral electricity 

transaction.   In order to make up for its inadequate 

transmission outlay, this research goal has pursued 

the optimal placements of FACTS devices in the 

Nigerian transmission system in order to secure the 

following steady state operational improvements: 

1. Minimization of network losses; 

2. Relief of transmission congestion during peak 

demand;  

3. Voltage stability enhancement; and  

4. Possible deferment of transmission 

reinforcement. 

  Figure 1.3 portrays the functional 

representation of the Nigerian national grid equipped 

with optimally designed multi-SVC and TCSC based 

on MILP solution of OPF formulation to realize the 

aforementioned operational improvements.  The 

distributed SVCs and TCSC are then supervised by 

two-level hierarchical controller in keeping with the 

generalized hierarchical control structure of Figure 

1.0.  The functional task of the central coordinator is 

to resolve negative mutual interactions amongst 

installed FACTS devices if and when so identified on 

the basis of sound algorithmic framework that relies 

on periodic synchronous data information received 

from all local controllers.  Note that each local 

controller is dedicated to specific FACTS device with 

demarcated zone of operational influence. The local 

controllers, in turn, rely wholly on local information 

of system quantities such as bus voltages, line flows 

and local network information to change optimal 

settings for their respective FACTS devices as system 

operating point changes. Central to the 

implementation of the proposed control structure are 

bi-directional communication and data acquisition 

channels configured around distributed phasor 

measurement units (PMUs) and wireless 

communication infrastructure[]. At the local 

controller level, relying on data acquired periodically 

and the local neighbour network the optimal settings 

for each FACTS device are then determined using 

sensitivity analysis.  

  

Graph Parameters Nigerian  Grid***  IEEE 30 bus** 

Nodes/Buses 39 30 

Elements (Transmission line + 
Transformers) 

58 41 

Diameter* 10 7  

Number of Maximum Shortest Path 1 2 

Average Node Degree 2.795 2.73 

Clustering Coefficient 0.1457 0.2347 

Average path length 2.123 3.47 

Hub ( Maximum number of connected 

lines) 

Benin Bus  Node 6 
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Figure 1.3: Functional Representation of 

Hierarchical Steady State Control of Optimal 

Placement of Multi-SVC and TCSC in Three- Area 

Nigerian Grid System  

 

  The central coordinator relies on the global 

data received and sensitivity computations to identify 

any existence of mutual interactions amongst 

electrically close FACTS devices. Upon detection of 

negative mutual interactions amongst FACTS devices 

will trigger implementation of OPF formulation to 

determine new optimal settings to override their 

locally computed settings.  In the absence of mutual 

interactions amongst FACTS devices, their respective 

settings determined at local controller level are 

returned by the central coordinator as optimal for 

implementation. For the sake of completeness, the 

operating ranges of the various SVC and TCSC 

optimally sited in the Nigerian national grid and 

expected steady state operational improvements are 

presented in Table 5.2.   

 

 

Table 5.3: Summary of 

 
Optimum number of FACTS required for minimum 

installation cost 

  We reiterate again that the Nigerian national 

grid admitted more of shunt FACTS type (SVC or 

STATCOM) and less of series FACTS type (TCSC) 

due to its radial topology.  With the completion of 

on-going transmission reinforcements for more 

reliable and secure delivery of electricity to 

consumers, it is envisioned that more series or series-

shunt FACTS types will be admitted.  Fortunately, 

FACTS devices are re-locatable and expandable if 

and when their respective ratings and/or locations 

become suboptimal as consequence of rapid 

expansion of network infrastructure.  Indeed, the 

expectation is that the Nigerian transmission 

infrastructure will witness rapid expansion driven 

primarily by opening of transmission entity to private 

participation but under unified operational 

management of regional independent system 

operators (ISOs)1US$=N200 
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Figure 4.15:  IEEE 30-Bus System Showing SVC 

Locations and Their Concatenated Grouping 

Installation Sequence 

 

 
Figure 4.18: 39-Bus Nigerian Grid System Showing 

SVC Locations and Their Concatenated Grouping 

Installation Sequences 

II. CONCLUSION 
 Generalized hierarchical control architecture 

has been proposed to determine the steady state 

control setting of each distributed multi- FACTS 

devices in large interconnected network enabled by 

dedicated controllers at local level,    resolve all 

control conflicts and optimize parameter settings at 

supervisory level (Coordinator).  This would 

engender efficient communication technologies and 

distributed phasor measurement units for data 

acquisition system.  The design of a hierarchical 

control framework for the Nigerian grid and IEEE 30 

Bus systems has been set forth as closure to this 

work. 
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